3.1292 \(\int \frac{\cot ^2(c+d x) \csc ^2(c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=153 \[ -\frac{2 b^2 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^4 d}+\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}-\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}+\frac{b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d} \]

[Out]

(-2*b^2*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^4*d) - (b*(a^2 - 2*b^2)*ArcTanh[C
os[c + d*x]])/(2*a^4*d) + ((a^2 - 3*b^2)*Cot[c + d*x])/(3*a^3*d) + (b*Cot[c + d*x]*Csc[c + d*x])/(2*a^2*d) - (
Cot[c + d*x]*Csc[c + d*x]^2)/(3*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.673969, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.276, Rules used = {2889, 3056, 3055, 3001, 3770, 2660, 618, 204} \[ -\frac{2 b^2 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^4 d}+\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}-\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}+\frac{b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^2*Csc[c + d*x]^2)/(a + b*Sin[c + d*x]),x]

[Out]

(-2*b^2*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^4*d) - (b*(a^2 - 2*b^2)*ArcTanh[C
os[c + d*x]])/(2*a^4*d) + ((a^2 - 3*b^2)*Cot[c + d*x])/(3*a^3*d) + (b*Cot[c + d*x]*Csc[c + d*x])/(2*a^2*d) - (
Cot[c + d*x]*Csc[c + d*x]^2)/(3*a*d)

Rule 2889

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f,
 m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cot ^2(c+d x) \csc ^2(c+d x)}{a+b \sin (c+d x)} \, dx &=\int \frac{\csc ^4(c+d x) \left (1-\sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx\\ &=-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d}+\frac{\int \frac{\csc ^3(c+d x) \left (-3 b-a \sin (c+d x)+2 b \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{3 a}\\ &=\frac{b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d}+\frac{\int \frac{\csc ^2(c+d x) \left (-2 \left (a^2-3 b^2\right )+a b \sin (c+d x)-3 b^2 \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{6 a^2}\\ &=\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac{b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d}+\frac{\int \frac{\csc (c+d x) \left (3 b \left (a^2-2 b^2\right )-3 a b^2 \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{6 a^3}\\ &=\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac{b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d}+\frac{\left (b \left (a^2-2 b^2\right )\right ) \int \csc (c+d x) \, dx}{2 a^4}-\frac{\left (b^2 \left (a^2-b^2\right )\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{a^4}\\ &=-\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}+\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac{b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d}-\frac{\left (2 b^2 \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^4 d}\\ &=-\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}+\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac{b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d}+\frac{\left (4 b^2 \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^4 d}\\ &=-\frac{2 b^2 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{a^4 d}-\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}+\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac{b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x)}{3 a d}\\ \end{align*}

Mathematica [B]  time = 6.23091, size = 351, normalized size = 2.29 \[ \frac{\left (a^2 b-2 b^3\right ) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{2 a^4 d}+\frac{\left (2 b^3-a^2 b\right ) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{2 a^4 d}+\frac{\csc \left (\frac{1}{2} (c+d x)\right ) \left (a^2 \cos \left (\frac{1}{2} (c+d x)\right )-3 b^2 \cos \left (\frac{1}{2} (c+d x)\right )\right )}{6 a^3 d}+\frac{\sec \left (\frac{1}{2} (c+d x)\right ) \left (3 b^2 \sin \left (\frac{1}{2} (c+d x)\right )-a^2 \sin \left (\frac{1}{2} (c+d x)\right )\right )}{6 a^3 d}-\frac{2 b^2 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{\sec \left (\frac{1}{2} (c+d x)\right ) \left (a \sin \left (\frac{1}{2} (c+d x)\right )+b \cos \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{a^2-b^2}}\right )}{a^4 d}+\frac{b \csc ^2\left (\frac{1}{2} (c+d x)\right )}{8 a^2 d}-\frac{b \sec ^2\left (\frac{1}{2} (c+d x)\right )}{8 a^2 d}-\frac{\cot \left (\frac{1}{2} (c+d x)\right ) \csc ^2\left (\frac{1}{2} (c+d x)\right )}{24 a d}+\frac{\tan \left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right )}{24 a d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cot[c + d*x]^2*Csc[c + d*x]^2)/(a + b*Sin[c + d*x]),x]

[Out]

(-2*b^2*Sqrt[a^2 - b^2]*ArcTan[(Sec[(c + d*x)/2]*(b*Cos[(c + d*x)/2] + a*Sin[(c + d*x)/2]))/Sqrt[a^2 - b^2]])/
(a^4*d) + ((a^2*Cos[(c + d*x)/2] - 3*b^2*Cos[(c + d*x)/2])*Csc[(c + d*x)/2])/(6*a^3*d) + (b*Csc[(c + d*x)/2]^2
)/(8*a^2*d) - (Cot[(c + d*x)/2]*Csc[(c + d*x)/2]^2)/(24*a*d) + ((-(a^2*b) + 2*b^3)*Log[Cos[(c + d*x)/2]])/(2*a
^4*d) + ((a^2*b - 2*b^3)*Log[Sin[(c + d*x)/2]])/(2*a^4*d) - (b*Sec[(c + d*x)/2]^2)/(8*a^2*d) + (Sec[(c + d*x)/
2]*(-(a^2*Sin[(c + d*x)/2]) + 3*b^2*Sin[(c + d*x)/2]))/(6*a^3*d) + (Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(24*a
*d)

________________________________________________________________________________________

Maple [A]  time = 0.112, size = 250, normalized size = 1.6 \begin{align*}{\frac{1}{24\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{b}{8\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{1}{8\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{{b}^{2}}{2\,d{a}^{3}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-2\,{\frac{{b}^{2}\sqrt{{a}^{2}-{b}^{2}}}{d{a}^{4}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }-{\frac{1}{24\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}}+{\frac{1}{8\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{{b}^{2}}{2\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}+{\frac{b}{8\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}}+{\frac{b}{2\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{{b}^{3}}{d{a}^{4}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^4/(a+b*sin(d*x+c)),x)

[Out]

1/24/d/a*tan(1/2*d*x+1/2*c)^3-1/8/d/a^2*tan(1/2*d*x+1/2*c)^2*b-1/8/d/a*tan(1/2*d*x+1/2*c)+1/2/d/a^3*b^2*tan(1/
2*d*x+1/2*c)-2/d*b^2*(a^2-b^2)^(1/2)/a^4*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))-1/24/d/a/tan
(1/2*d*x+1/2*c)^3+1/8/d/a/tan(1/2*d*x+1/2*c)-1/2/d/a^3/tan(1/2*d*x+1/2*c)*b^2+1/8/d/a^2*b/tan(1/2*d*x+1/2*c)^2
+1/2/d/a^2*b*ln(tan(1/2*d*x+1/2*c))-1/d/a^4*b^3*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.8975, size = 1420, normalized size = 9.28 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[-1/12*(6*a^2*b*cos(d*x + c)*sin(d*x + c) - 12*a*b^2*cos(d*x + c) - 4*(a^3 - 3*a*b^2)*cos(d*x + c)^3 - 6*(b^2*
cos(d*x + c)^2 - b^2)*sqrt(-a^2 + b^2)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*
(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^
2 - b^2))*sin(d*x + c) - 3*(a^2*b - 2*b^3 - (a^2*b - 2*b^3)*cos(d*x + c)^2)*log(1/2*cos(d*x + c) + 1/2)*sin(d*
x + c) + 3*(a^2*b - 2*b^3 - (a^2*b - 2*b^3)*cos(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c))/((a^4*d
*cos(d*x + c)^2 - a^4*d)*sin(d*x + c)), -1/12*(6*a^2*b*cos(d*x + c)*sin(d*x + c) - 12*a*b^2*cos(d*x + c) - 4*(
a^3 - 3*a*b^2)*cos(d*x + c)^3 - 12*(b^2*cos(d*x + c)^2 - b^2)*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sq
rt(a^2 - b^2)*cos(d*x + c)))*sin(d*x + c) - 3*(a^2*b - 2*b^3 - (a^2*b - 2*b^3)*cos(d*x + c)^2)*log(1/2*cos(d*x
 + c) + 1/2)*sin(d*x + c) + 3*(a^2*b - 2*b^3 - (a^2*b - 2*b^3)*cos(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2)*si
n(d*x + c))/((a^4*d*cos(d*x + c)^2 - a^4*d)*sin(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**4/(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.20101, size = 365, normalized size = 2.39 \begin{align*} \frac{\frac{a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 3 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 12 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{3}} + \frac{12 \,{\left (a^{2} b - 2 \, b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{4}} - \frac{48 \,{\left (a^{2} b^{2} - b^{4}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} a^{4}} - \frac{22 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 44 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 12 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 3 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a^{3}}{a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3}}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

1/24*((a^2*tan(1/2*d*x + 1/2*c)^3 - 3*a*b*tan(1/2*d*x + 1/2*c)^2 - 3*a^2*tan(1/2*d*x + 1/2*c) + 12*b^2*tan(1/2
*d*x + 1/2*c))/a^3 + 12*(a^2*b - 2*b^3)*log(abs(tan(1/2*d*x + 1/2*c)))/a^4 - 48*(a^2*b^2 - b^4)*(pi*floor(1/2*
(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*a^4) - (22
*a^2*b*tan(1/2*d*x + 1/2*c)^3 - 44*b^3*tan(1/2*d*x + 1/2*c)^3 - 3*a^3*tan(1/2*d*x + 1/2*c)^2 + 12*a*b^2*tan(1/
2*d*x + 1/2*c)^2 - 3*a^2*b*tan(1/2*d*x + 1/2*c) + a^3)/(a^4*tan(1/2*d*x + 1/2*c)^3))/d